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The development of turbulence is investigated in the presence of a mean plane
shear flow (rate S) rotating with angular velocity vector (rate Ω) perpendicular
to its plane. An important motivation was generalizing the work by Lee, Kim &
Moin (1990) to rotating shear flow, in particular detailed comparisons of homoge-
neous rapid distortion theory (RDT) results and the databases of homogeneous and
channel flow direct numerical simulations (DNS). Linear analysis and related RDT
are used starting from the linearized equations governing the fluctuating velocity
field. The parameterization based on the value of the Bradshaw–Richardson number
B = R(1 +R) (with R = −2Ω/S) is checked against complete linear solutions. Owing
to the pressure fluctuation, the dynamics is not governed entirely by the parameter
B, and the subsequent breaking of symmetry (between the R and −1 − R cases) is
investigated. New analytical solutions for the ‘two-dimensional energy components’
E(l)
ij = Eij(kl = 0, t) (i.e. the limits at kl = 0 of the one-dimensional energy spectra)

are calculated by inviscid and viscous RDT, for various ratios Ω/S and both stream-
wise l = 1 and spanwise l = 3 directions. Structure effects (streak-like tendencies,
dimensionality) in rotating shear flow are discussed through these quantities and
more conventional second-order statistics. In order to compare in a quantitative way
RDT solutions for single-point statistics with available large-eddy simulation (LES)
data (Bardina, Ferziger & Reynolds 1983), an ‘effective viscosity’ model (following
Townsend) is used, yielding an impressive agreement.

1. Introduction
Rotating turbulent flows occur in fields as diverse as engineering (e.g. turbomachin-

ery, combustion engines with swirl and tumble), geophysics and astrophysics. Studies
of such flows have shown complex coupling between Coriolis forces, pressure and
strain. Effects of curvature and advection by large eddies can often be considered as
similar to those of rotation and analysed in the same way. Combined effects of strain
and background rotation are present in many actual flow configurations. The case
of the pure plane shear flow in a rotating frame is of particular interest, and was
studied both experimentally (Johnston, Hallen & Lezius 1972) and numerically (see
Kristoffersen & Andersson 1993, for a recent and comprehensive direct numerical
simulation, DNS, study). The basic case of shear with constant rate S , in a frame
rotating with constant angular velocity Ω, is shown in figure 1. Simple analyses
were also proposed to predict the ranges of stabilization and destabilization, with
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Figure 1. Homogeneous turbulent shear flow in a rotating frame.

unexpected success. Among them, the Bradshaw criterion (Bradshaw 1969), recalled
below, is the most popular. On the grounds of an analogy between rotation curvature
and density stratification, Bradshaw (1969) defined an equivalent gradient Richardson
number as

B = 2Ω(2Ω − S)/S 2 = R(1 + R)

in order to identify the stability of a rotating unidirectional shear flow (where the
rotation axis is perpendicular to the plane of the mean flow.) The rotation number
R = −2Ω/S is chosen here as the ratio of system vorticity 2Ω to shear-induced
vorticity −S . According to the value and the sign of the B-parameter (called the
Bradshaw–Richardson number hereinafter) there are three different cases: the neutral
case when B = 0 (which includes both the pure shear flow, Ω = 0, and the ‘zero
absolute vorticity’ flow, 2Ω − S = 0), the unstable case when B < 0 and the stable
case when B > 0. Even if the stability is satisfactorily predicted by the Bradshaw
analogy, the symmetry between R and −1 − R, assumed by using the Bradshaw–
Richardson number as the unique parameter for linear development, is not confirmed
by the results. This weakness in the Bradshaw approach is easily understood since the
analysis ultimately can be recovered from an oversimplified linear analysis, which is
pressureless (see Speziale & Mac Giolla Mhuiris 1989a, and Cambon et al. 1994, for
a detailed discussion). Three-dimensional linear stability analyses, capable of taking
into account the pressure perturbation, confirmed the value R = −1/2 for maximum
destabilization but exhibited an important asymmetry with respect to R = −1/2. For
example the case of zero rotation (pure shear, R = 0) was found to be very different
from the case of zero absolute vorticity R = −1, even if both cases were considered
as neutral in the Bradshaw approach.

Looking at the non-rotating case, the work of Lee, Kim & Moin (1990) showed
the unexpected agreement between homogeneous rapid distortion theory (RDT)
with constant shear rate and DNS results in a channel flow at high shear rate.
Even the tendency to develop streak-like structures can be obtained in pure inviscid
homogeneous RDT when looking at the time history of some ‘two-dimensional
energy components’ (or products of integral length scales and related Reynolds stress
components, Cambon 1990). The most interesting laws, given by inviscid RDT, were
〈u2

1〉L1
11 ∝ 1 + (St)2/2 and 〈u2

1〉L3
11 = Constant (Cambon 1990), where L1

11 is the
streamwise integral length scale (related to the length of the streak-like structure)
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and L3
11 is the spanwise one (related to the spacing of the streak-like structure). The

physical relevance of such combinations of Reynolds stresses and integral length
scales was shown in the analysis of pure rotation effects (Jacquin et al. 1990), and
their interpretation as two-dimensional energy components justified. In addition, simple
analytical RDT solutions can be found for these quantities, but not for the Reynolds
stresses or the integral length scales considered separately.

In order to investigate the role of pressure and the alteration of structure and
statistics due to system rotation, an improved version of RDT is extensively used,
following the method and the formalism of Cambon (1982) (updated in Cambon et
al. 1994), which do not essentially differ from those of Townsend (1976). The starting
point is solving linearized equations that govern the fluctuating velocity field for
arbitrary initial data, rather than solving the linear contribution to an equation (often
referred to as the Craya equation, Craya 1958) for statistical second-order moments;
(see Deissler 1970, Courseau & Loiseau 1978; Bertoglio 1982, for the latter approach).
In addition to inviscid and viscous RDT, some corrections proposed by Townsend
(1970), RDT corrected for decay, (hereafter referred to as RDTT) will be compared to
available RDT and DNS results, following preliminary applications by Salhi (1993).

The paper is organized as follows. The background for the linear analysis of
the fluctuating field, in the presence of the rotating shear, is presented in §2, and
subsequent RDT for second-order statistics is introduced. An analytical derivation of
two-dimensional energy components with both spanwise and streamwise separations
is performed in §3. Comparisons between LES (Bardina, Ferziger & Reynolds 1983)
and RDTT (Townsend approach) are given in §4. The qualitative RDT results are
discussed in §5, in connection with some actual structural features identified in a
rotating channel flow. Finally §6 contains a discussion of the main results and
conclusions.

2. Linear analysis
2.1. The role of the pressure in the presence of rotation

As recalled and discussed in §1, the most popular criterion for the stability of rotating
shear flow (figure 1) is based on the sign of the Bradshaw–Richardson number
B = R(R + 1) where R = −2Ω/S is the rotation number, which is defined in this
paper as the ratio of system vorticity (2Ω) and shear-induced vorticity (−S). This
criterion can be introduced using different approaches, but it ultimately comes from
a simplified pressure-less linear analysis, which is also two-component regarding the
fluctuating velocity field (only the components in the plane of the mean shear are
needed). The ‘pressureless’ aspect is either explicit or implicit (implicit as in the
‘displaced particle approach’, Tritton 1981), and it is possible to look either at the
equations for the fluctuating velocity field ui (Speziale & Mac Giolla Mhuiris 1989a),
or at the equations for the Reynolds stress tensor 〈uiuj〉 (Tritton 1992).

All approaches can be started from the following linearized equations for velocity
ui and pressure p disturbances in the presence of mean shear and Coriolis force:

u̇i = −S (δi1δj2 + 2(Ω/S)εi3j)︸ ︷︷ ︸
Mij

uj + (1/ρ0)∂p/∂xi + ν∇2ui, (1)

in which u̇i = ∂ui/∂t+ Sx2∂ui/∂x1 denotes the substantial derivative along the mean
flow, εijk is the third-order alternating tensor, ν is the kinematic viscosity, and ρ0

is the density. The first two terms in the right-hand side involve the matrix Mij
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whose non-zero eigenvalues are ±(−B)1/2. Hence the amplification of u (which only
concerns the two components u1, u2) is governed by exp (±(−B)1/2St) when solving
the simplified initial value problem (1) in the absence of pressure (and viscous) effect.
Consequently a simple parameterization in terms of St and B is found.

The role of the fluctuating pressure, in connection with the incompressibility con-
straint ui,i = 0, is accounted for in a true three-dimensional linear stability analysis,
or in homogeneous RDT, solving the complete equation (1) for arbitrary initial data.
The results seem not to question the fact that the case R = −1/2 (minimal negative
value −1/4 for B), is the most destabilizing one. The pressure is responsible, however,
for the loss of symmetry shown when comparing the cases R and −1 − R (such a
symmetry holds provided that B is assumed to be the only relevant parameter). Of
special interest to this loss of symmetry are the two presumed neutral cases (R = 0
and R = −1), which correspond to the same value B = 0: the non-rotating case
R = 0 is characterized by a complicated inviscid linear solution (RDT, Townsend),
which gives more amplification than the case of zero absolute vorticity R = −1,
whose related linear solution can be easily derived from a Cauchy solution for the
fluctuating vorticity field (Cambon et al. 1994). On the other hand, it is noteworthy
that when turbulence is initially two-dimensional (in the plane of the mean flow) the
velocity fluctuation is unaffected by system rotation (only the pressure fluctuation is
affected by both shear and rotation).

In short, a simplified analysis using a pressureless two-component perturbation
velocity field is partially relevant to predict the range of stabilization–destabilization
in a rotating shear flow, whereas an analysis using a two-dimensional perturbation
field including the pressure is not. This is explained by the essential role of pure
spanwise modes in the complete linear stability problem (Cambon et al. 1994; Leblanc
& Cambon 1997).

From the standpoint of single-point modelling, which is outside the scope of the
present paper, the issues discussed above are of great interest. Let us recall that a k–ε
model is basically insensitive to system rotation, so that only an ‘ad hoc’ correction of
the ‘production’ terms, including Richardson-dependent scalar coefficients, is possible.
Full Reynolds stress models can take into account stabilizing-destabilizing effects
through the ‘production-Coriolis redistribution’ tensor S(Mil〈uluj〉+Mjl〈uiul〉) (M as
in (1)), which reflects pressureless parameterization, whereas effects of fluctuating
pressure are reflected in the ‘rapid’ pressure–strain correlation tensor. Present models
for pressure–strain correlations yield an asymmetry (different development for R
and for −1 − R), but the maximum amplification of turbulence is found for values
significantly different from R = −1/2 (see Speziale & Mac Giolla Mhuiris 1989a, b.)

2.2. Complete linear analysis

Since the velocity field is unbounded (no boundary conditions), in agreement with
statistical homogeneity, Fourier transformation, which is an invaluable tool for treat-
ing pressure effects, is used to seek solenoidal (ui,i = 0) solutions of the linearized
equation (1)

(.)(x, t) =

∫
exp(ix · k)(̂.)(k, t)d3k,

where i2 = −1. Here k = (k1, k2, k3) is the wave vector, which is considered as time-
dependent in order to follow the advection by the mean, and its initial (at t = 0)
value is denoted K = (K1, K2, K3), so that

k1 = K1 = K cosϕ sin θ, (2a)
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k2 = K2 −K1St = K sin θ(sinϕ− St cosϕ), (2b)

k3 = K3 = K cos θ (2c)

(Townsend 1976) where (K, θ, ϕ) is a spherical coordinates system for K . Eliminating
the pressure from (1) in Fourier space by means of the incompressibility condition,
we obtain the equation for the Fourier transform of the velocity fluctuation

˙̂ui +
νk2

S
ûi = −

[(
δi1δj2 + 2

Ω

S
εi3j

)
− kikn

k2

(
2δn1δj2 + 2

Ω

S
εn3j

)]
︸ ︷︷ ︸

Lij

ûj (3)

where the overdot denotes the time derivative at fixed K , in terms of the dimensionless
parameter St. Of course, the contribution of Mij in (1) is recovered as the first term
in Lij , whereas the additional (ki/k-dependent) term corresponds to the explicit
contribution from the fluctuating pressure. The solution can be written as

ûi(k, t) = exp

(
−νk

2

S
f(k/k, St)

)
Gij(k/k, t)ûj(K , t = 0), (4)

where

f(k/k, St) = St

(
1 +

k1k2

k2
St+

k2
1

k2

(St)2

3

)
(5)

is involved in the viscous term, calculated as an integrating factor.
As a last simplification, the velocity intensity ûi is sought in terms of two components

φ̂α = ûie
α
i , α = 1, 2 in the plane normal to k (due to the incompressibility constraint),

so that the rank-three matrix G can be replaced by a rank-two matrix g for generating
the complete linear solution similar to (4) (see Cambon 1982; Cambon et al. 1994, and
Appendix A for details). Even if the linear stability, or linear dynamics, is governed
by the deterministic matrix g only in the inviscid case, and by both g and f in the
viscous case, complete RDT solutions for second-order statistics are also of interest,
and are considered in the following.

2.3. RDT for second-order statistics

All second-order statistics, including single and two-point velocity (and also vorticity
and ‘rapid’ pressure, and so on) correlations, can be derived from the second-order
spectral tensor Φij(k1, k2, k3, t). This tensor, which is the Fourier transform of the
velocity correlations at two points, is defined in homogeneous turbulence by

〈û∗i (p, t)ûj(k, t)〉 = Φij(k, t)δ(p − k).

Using the previous linear relationship for û (4), Φij can be calculated (with arbitrary
initial values) as

Φij(k, t) = exp (−2νk2f/S)GilGjnΦln(K , t = 0).

Assuming that the turbulence is initially isotropic, the spectral tensor is found as fol-
lows, as the product of three contributions, namely Φgij which reflects the deterministic
and inviscid linear mechanismes, the statistical initial data, and the viscous term:

Φij(k, t) = Φ
g
ij(k/k, t)

E(K, 0)

4πK2
exp

(
−2

νk2

S
f(k/k, t)

)
. (6)

The deterministic factor Φg only involves the matrix G (equation (4)); its expression
is facilitated using the g matrix and the (e, Z) decomposition of the spectral tensor
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(Cambon & Jacquin 1989), so that

Φ
g
ij = egPij + Re(ZgNiNj), (7)

with

Pij = δij − kikj/k2, N = e(2) − ie(1),

eg = gαβgαβ/2, Zg = (g2αg2α − g1αg1α)/2 + i(g11g21 + g22g12).

From (6) it is clear that the RDT solution involves both orientation and modulus of
the wavevector, but only the initial data and the viscous factor display the dependency
with respect to the modulus (or size of the structures). Accordingly, the inviscid RDT
history of any single-point correlation, that is obtained by integration over wave-space
(in terms of K, θ, φ in (2)), is independent of the form of E(K, 0) since the contribution
of initial data amounts to, e.g. the initial kinetic energy q2

0/2 =
∫ ∞

0
E(K, 0)dK only.

On the other hand, the viscous factor in (6) affects the RDT history in a way which
depends on the shape of E(K, 0). Hence a model for E(K, 0) has to be specified
for viscous applications, and especially for introducing a correction for decay in
agreement with Townsend’s (1976) proposal.

For this purpose we consider the following form (Townsend 1976; Hunt &
Carruthers 1990) that decreases very rapidly with increasing wavenumber:

E(K, 0) ∝ KN exp(−K2L2/2), (8)

where N is integer (N > 0) and L is a measure of the size of the largest eddies, or an
integral scale. Equation (6) becomes

Φij(k, t) = Φ
g
ij(k/k, t)K

N−2 exp (−K2L2/2)

[
1 +

4

Ret
k2/K2f(k/k, t)

]
(9)

where Ret = L2S/ν is the relevant Reynolds number. Of course the exponent N and
the Reynolds number control to what extent the RDT history is affected by viscous
decay; inviscid RDT is recovered in the limit of infinite Ret.

Relationships (8) and (9) will be used for comparing results of viscous RDT with
other experimental or numerical results whose initial spectral data are not available.
Another application will include an implicit model for decay proposed by Townsend
(referred to as RDTT hereafter). This model amounts to specifying in (8) typical values
(discussed further) for both Ret and N (Ret = Re∗ and N = 4) assuming an effective
viscosity. It is important to point out that the latter model aims at incorporating
both viscous effects and nonlinear transfers in the dynamics of the largest scales. In
that sense, the spectrum model (7) and the universal ‘effective’ value attributed to
Re∗ = L2S/νt in (9) cannot be considered independently of each other, and cannot be
related to ‘true’ initial data, since they characterize a full – although crude – model
for nonlinear interactions. The effective viscosity νt was discussed by Townsend (1970,
1976, 1980), Hunt (1978), and Savill (1987). As pointed out by Townsend, a typical
value for Re∗ (Re∗ = 33.3) is consistent with the following assumptions: production
(P = −S〈u1u2〉) and dissipation (ε = 5νtq

2/L2) of turbulent energy (q2/2) are roughly
equal, the ratio (−〈u1u2〉/q2) is nearly constant (= 0.15), and the initial transfer of
energy between eddies, or ε, is not expected to change greatly during distortion.

3. Two-dimensional energy components
Before computing (§4) ‘classic’ terms involved in Reynolds stress modelling (RSM)

through numerical three-dimensional integration of (8), it is useful to look at quantities
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that need only two-dimensional integration and can be obtained analytically. These
quantities carry important information about the structure of turbulence, which is
not included in the RST.

Following the analysis of streak-like structure in a shear flow without rotation by
Lee et al. (1990), who compared homogeneous RDT with homogeneous and channel
DNS, two-dimensional energy components (Cambon 1990)

E(l)
ij =

∫ ∞
0

〈ui(x, t)uj(x+ rs(l), t)〉dr (10)

(with s(l) the unit vector along the direction xl), are of particular interest, as discussed
further in §5. Particularly, the most relevant aspect ratio for elongated structures
(denoted ‘streamwise eddy elongation parameter’ by Lee et al. 1990) L∗ can be
analytically calculated in inviscid RDT as the ratio E(1)

11 /(2E
(3)
11 ) (Cambon 1990).

The relevance of E(3)
ij was brought to the fore in the case of pure rotation (axis x3)

without mean shear (Cambon & Jacquin 1989; Jacquin et al. 1990), as an indicator of
the transition from three-dimensional to two-dimensional structure. Since the velocity
correlation tensor is averaged onto the direction l, the spatial variability in terms
of xl is removed from consideration, and the contribution from the two-dimensional
manifold in planes xl = constant is displayed. Like the two-point correlation tensor,
these quantities are true tensors with respect to the subscripts (i, j) at fixed l. On
the other hand, the related integral lengthscales, which are defined by dividing these
quantities by the Reynolds stress components, or

Llij = E(l)
ij /〈ui(x, t)uj(x, t)〉 (11)

(i, j not summed), have no tensorial properties.
In homogeneous turbulence, the two-dimensional energy components (10) are given

by integrating the second-order spectral tensor over the plane kl = 0

E(l)
ij = Eij(kl = 0, t) = π

∫ ∫
(Φij)|kl=0d

2k, (12)

where Eij(kl, t) are the so-called one-dimensional spectra, or ‘integrated plane spectrum
functions’ (Batchelor 1953). Clearly, the two-dimensional energy components only
involve integration over a plane (a two-dimensional manifold), whereas the Reynolds
stress components involve integration over the full three-dimensional wave-space (see
(13) below).

Analytical calculations for the case of rotating shear of the integrals in (12), using
the RDT relationship (6)–(9) for Φij , are given in Appendix B.

3.1. Spanwise separation

The related plane k3 = 0 corresponds to the two-dimensional manifold in the plane
of the mean flow. When the viscous terms are discarded one easily shows that the
spanwise two-dimensional energy components are affected neither by rotation nor by
shear, and keep their initial values, where E(3)

11 = E(3)
33 /2 and E(3)

ij = constant. This
behaviour is partially recovered (smallest St, highest shear rapidity) in the numerical
simulation (DNS) databases by Lee (revisited by Cambon 1990, for computing
the two-dimensional energy components) in the case of non-rotating homogeneous
turbulent shear flow, but significant viscous and nonlinear effects are exhibited (see
figure 2). Hence a refined comparison with DNS results using viscous RDT is given
as follows.

Using (9) and (12), the RDT relationships for E(3)
11 and E(3)

33 display a viscous factor
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Figure 2. Time crossover between the spanwise two-dimensional energy components E3
11 and E3

33,
DNS databases of Lee (see Cambon 1990).

which yields a monotonic decrease. This decay is controlled by N (N > 0) and the
Reynolds number Ret = L2S/ν, which can be related to the initial dimensionless
shear rapidity: Ret = (N + 1)S∗0 , with S∗0 = (Sq2/ε)t=0.

The decrease of E(3)
ii , i = 1, 2, 3 is shown in figure 3 for N = 4 and S∗0 = 5 and

S∗0 = 34, from the Lee database, as in figure 2. In the range 0 6 St < 6 the viscous
RDT results compare with DNS data at high shear rate relatively better than at low
shear rate. For St > 6 neither viscous RDT nor inviscid RDT can predict the increase
in E3

11 in DNS data (especially at high shear rate), indicating increasing effects of the
nonlinear straining at large St (ignored in the linear theory). Note that the crossover
in the development of E(3)

33 and E(3)
11 , that is observed in DNS at St ∼ 7 for both high-

and low-shear cases (figure 2), could be partially tied to the effects of viscosity, since
viscous RDT also yields a crossover, but not at St = 7. In short, the linear dynamics
of the two-dimensional energy components with spanwise separation is insensitive
to rotation, but interesting effects of the shear are taken into account through the
viscous RDT term.

3.2. Streamwise separation

For k1 = 0 the wave vector is not affected by shear and remains constant k = K , so
that full analytical solutions can be found for the two-dimensional energy components
in the streamwise direction in inviscid or viscous RDT, as shown in Appendix B. In
contrast to spanwise two-dimensional energy components, the agreement between
DNS results and RDT solutions at R = 0 (no rotation) is impressive, as shown in
figure 4. Especially, the DNS development at high shear rate is in perfect agreement
with the law given by inviscid RDT: E(1)

11 (St)/E(1)
11 (0) = 1 + (St)2/2.

More generally, these solutions for E(1)
ij are of particular interest since they are

sensitive to both shear and rotation, and thus are good candidates for discussing
the role of R = −2Ω/S . Inviscid RDT solutions, made non-dimensional by initial
values, exhibit the dependence in terms of St and R (B1)–(B4). Viscous RDT solutions
are easily derived from inviscid RDT ones by multiplying by a unique factor (1 +
4 St/Ret)

−N/2. Calculations of the same quantities using ‘pressureless’ approximation
(B5)–(B8) exhibit significant differences (with respect to ‘exact’ RDT), except at
R = 0, as shown in figure 5. Note that the change of R into −1− R in the simplified
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Figure 3. Time history of the spanwise two-dimensional energy components: (a) E3
11; (b) E3

22; (c) E3
33.

DNS (low shear rate, S∗0 ≈ 5; high shear rate, S∗0 ≈ 34). Viscous RDT (low shear rate, S∗0 = 5, N = 4
or Ret = 25; high shear rate, S∗0 = 34, N = 4 or Ret = 170).

pressureless problem amounts to exchanging the components 1 and 2 (see e.g. (1)), so
that only quantities which are symmetric in permuting (1, 2) depend on R through
B only, in the pressureless case. This explains why the pressureless distributions in
figure 5 are not symmetric with respect to R → (−1 − R). Hence, effects of pressure
are shown in figure 5, but not the effects of pressure on the asymmetry.

4. Comparisons with LES
Since LES data at different R are not available for two-dimensional energy com-

ponents, only classical single-point correlations are investigated in this section. The
Reynolds stress tensor is derived from (6) as

〈uiuj〉 =

∫
(Φgij)

E(K, 0)

4πK2
exp

(
−2

νk2

S
f(k/k, t)

)
d3k. (13)

A similar relationship was used by Courseau & Loiseau (1978) in the case of pure
shear, with an initial energy spectrum from the experiment of Comte-Bellot & Corrsin



180 A. Salhi and C. Cambon

40

60

20

0

–20
0 2 4 6 8 10

St

Viscous RDT (low shear rate)
DNS (low shear rate)

DNS (high shear rate)

Inviscid RDT

Figure 4. Time history of the streamwise two-dimensional energy component E1
11. DNS (low shear

rate, S∗0 ≈ 5; high shear rate, S∗0 ≈ 34). Viscous RDT (low shear rate, S∗0 = 5, N = 4 or Ret = 13.5).

(a)Without pressure

With pressure

1.0

1.5

0.5

0

–1.0 –0.5 0 0.5

(b)

8

12

4

0

–1.0 –0.5 0 0.5

R /2

(c)

1

2

0

–1.0 –0.5 0 0.5

(d )

2

3

1

0

–1.0 –0.5 0 0.5

R /2

3

Figure 5. Rotation and pressure effects on the streamwise two-dimensional energy components for
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(1971) and a shear rate from the experiment of Rose (1966). The same conditions were
used by Bertoglio (1982) for introducing the Coriolis force and performing the first
RDT-type computations over the parameter range −0.824 6 R = −2Ω/S 6 0.824.
Note that Φgij was derived by the previous authors from the linearized equation for the
spectral tensor Φij (Craya’s 1958 equation), and not from the simpler linear analysis
for the velocity fluctuation, so that the link between Φij and g was missed. RDTV
will denote viscous RDT at the same conditions (initial spectrum, shear rate) as those
of Bertoglio.

Using (8) for E(K, 0) and d3k = d3K = K2dKdθdϕ, the (13) becomes

〈uiuj〉 =
q2

0

8π

∫ 2π

0

∫ π

0

(Φgij)

(
1 +

4

Ret

k2

K2
f(k/k, t)

)−(N+1)/2

sin θdθdϕ, (14)

where q2
0/2 is the turbulent kinetic energy at t = 0. For N = 4 and Ret = Re∗ = 33.3,

the expression for the statistical correlations is the same as in Townsend’s model
introduced in §2.3 and referred to as RDTT.

The only LES results for homogeneous turbulent shear flow in a rotating frame
are those of Bardina et al. (1983). They used a pseudo-spectral method with a
Smagorinsky (1963) model (Cs = 0.19); initial data were isotropic, with 2ε0/(q

2
0S) =

0.247 or, equivalently, a dimensionless shear rapidity S∗0 = q2
0S/ε0 = 8.1 (defined as in

§3). (According to Speziale & Mac Giolla Mhuiris (1989a), the value S∗0 = 6.76 gives
better agreement than the former value, and will be used whenever it is necessary.)
Note that this initial value of the shear rapidity is very close to the one consistent
with the effective Reynolds number in RDTT (using Ret = (N + 1)S∗0 and N = 4);
this circumstance, which favours the agreement between LES and RDTT results, is
fortuitous since Bardina et al. (1983) did not use Townsend’s arguments (Ferziger,
private communication, 1995). The four values of R selected by Bardina et al. are the
most typical: R = ∞ (pure rotation), R = −1 (zero absolute vorticity), R = −1/2,
and R = 0.

The results predicted by RDT, RDTV with LES data are compared only for the time
history of the turbulent kinetic energy. For the other turbulence statistics such as the
Reynolds stress anisotropy tensor, the pressure–strain correlation or the dissipation
rate, only the RDTT predictions are compared with LES data. A numerical code is
used to derive the matrix g using a fourth-order Runge–Kutta method (analytical
solutions for g are obtained for k1 = 0, k3 = 0, only those needed in §3, and for B = 0,
see Appendix A). Then the factor Φgij in (14) is constructed by products of g (7).

Only figures in the Bardina et al. (1983) report are used for the subsequent
comparisons with LES results. The time history of the turbulent kinetic energy for
R = −1, R = −1/2 and R = 0 is shown in figure 6. As in LES, in the different versions
of the linear approach the value R = −1/2 corresponds to the maximum increase
of the turbulent kinetic energy, and there is a difference between the time history of
q2 in the neutral cases (B = 0): q2 increases faster for R = 0 than for R = −1. For
each value of R, the turbulence intensity increases faster when the turbulent Reynolds
number (Ret) increases. It appears that the Townsend model (or RDTT) gives results
in fair agreement with LES data, in contrast with present second-order models (see
Speziale & Mac Giolla Mhuiris 1989b, Salhi, Lili & Sini 1993; Salhi & Lili 1995).

Figure 7 shows the time history of the Reynolds stress anisotropy tensor bij =
(Rij/q

2 − δij/3), exhibiting again a fair agreement between LES and RDTT. Weak
discrepancies are found regarding diagonal components, whereas RDTT predicts well
the time evolution of the component b12, which accounts for the energy production,
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Figure 6. Time history of the turbulent kinetic energy non-dimensionalized by the turbulent
kinetic energy at St = 0. (a) R = 0; (b) R = −1/2; (c) R = −1.

and shows a significant difference between the pure shear flow, R = 0, and the zero-
absolute-vorticity flow, R = −1. In both LES and RDTT, a large decrease (increase
in absolute value yielding larger energy production) is observed for R = −1/2.

Concerning the RDDT development of the pressure–strain correlation,

φij =

〈
p

(
∂ui

∂xj
+
∂uj

∂xj

)〉
=
q2

0

2π
S

[
δl1δm2 +

Ω

S
εl3m

]
∫ 2π

0

∫ π

0

[
klkj

k2
(Φgim) +

klki

k2
(Φgjm)

]
(1 +

4

Ret

k2

K2
f(k/k, t))−(N+1)/2 sin θdθdϕ,

a good agreement with LES is again found, as shown in figure 8 for diagonal
components. Note that there is no significant difference between RDTT predictions
and LES data for R = −1, whereas discrepancies appear for the most destabilizing
case (R = −1/2).

The dissipation tensor, which is directly obtained in homogeneous turbulence by
changing Φgij to 2νk2Φ

g
ij in (13), is now considered. The time history of the dissipation

rate ε = εii/2 predicted by RDTT is compared with LES in figure 9. It seems that the
linear approach, when compared to LES, takes satisfactorily into account the effect
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Figure 7. Time history of the Reynolds stress anisotropy tensor. Lines, RDTT; symbols, LES.
(a) b11; (b) b22; (c) b33; (d) b12.

of the rotation number on the dissipation dynamics, even though RDT is expected
not to be relevant for the small-scale motions (see e.g. Hunt & Carruthers 1990).
One should keep in mind, however, than LES itself cannot predict accurately the
small scales which are important for the dissipation spectrum, so that the satisfactory
agreement between RDTT and LES has only a relative meaning. Particularly, for
R = −1 the dissipation rate ε, which is weakly decreasing, is fairly well reproduced
by RDTT.

Concerning typical integral length scales, the time history of the streamwise quantity
L1

11 = E(1)
11 /〈u2

1〉 is presented in figure 10. The agreement between RDDT and LES
is not so satisfactory as previously, even though the DNS history of the related
two-dimensional energy component E(1)

11 at high shear rate was very well predicted
by RDT (figure 4). Unfortunately, it was not possible to extend the RDTT–LES
comparisons to all the detailed two-dimensional energy components calculated in §3,
since the LES databases (in Bardina et al.) were not available, but some qualitative
comparisons will be presented in §4.

Finally, the asymmetry with respect to R = −1/2 in the development is illustrated
in figure 11 by plotting the distribution of statistical quantities (q2, b12, and b33) as
functions of R,−2 6 R 6 1 or −1/4 6 B 6 2, for a given non-dimensional time
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Figure 10. Time history of the streamwise length scale, L1
11, non-dimensionalized by the filter

width, ∆, used by Bardina et al. (1983). Lines, RDTT; symbols, LES.

St = 5. This figure indicates clearly that for a given value of B, the rotation has
a larger effect on the statistical quantities when R to the left of R = −1/2. The
maximum magnitudes of q2 and b12 are obtained for R = −1/2, and the instability
domain predicted by RDT (−1.2 6 R 6 0.4 from figure 11b) is significantly larger
than the one given by B 6 0 (or −1 6 R 6 0).

5. Towards elongated structures induced by shear in a rotating frame
To characterize the existence of streaky structures in homogeneous turbulence at

high shear rate, Lee et al. (1990) considered two parameters: ‘streamwise energy
partition’, W ∗ = 2〈u2

1〉/(〈u2
2〉 + 〈u2

3〉), and the eddy elongation, L∗ = L1
11/(2L

3
11) =

E(1)
11 /(2E

(3)
11 ). Their study has shown that the essential mechanism responsible for the

appearance of streaks in a wall-layer flow is contained in the linear unbounded theory
(homogeneous RDT) at St > 8. Accordingly the threshold values W ∗ = 5 and L∗ = 8
were proposed to characterize the emergence of streaky structures.

Hence, the relevance of RDT and RDTT with respect to homogeneous DNS is
checked, first in the non-rotating case, plotting L∗ (figure 12) and W ∗ (figure 13).
RDT, RDTT and DNS results are in excellent agreement for the streamwise partition
energy parameter, but not for the eddy elongation parameter at large St from St = 2
to 4. The latter unsatisfactory comparison (figure 12) clearly illustrates that some two-
dimensional energy components can be more sensitive to subtle nonlinear effects than
the quantities obtained by three-dimensional integration over wave-space (such as the
Reynolds stress components). Nevertheless, the excellent agreement of DNS with RDT
for E(1)

11 (figure 4) leads us to distinguish spanwise and streamwise two-dimensional
energy components. Clearly, the ‘stabilized’ growth of L∗ found in DNS, which is
not reproduced by RDT in figure 12, is essentially due to the underprediction by
RDT of the spanwise quantity E(3)

11 for St > 6 (figure 3a) in the ratio L∗ = E(1)
11 /(2E

(3)
11 ).

Regarding the additional effect of system rotation, we can investigate both the
homogeneous case and the channel case in a similar way, as Lee et al. did (without
rotation). It is expected that the results – especially the analytical ones – of §2 and
Appendix B will be helpful in explaining the modification or suppression of streaky
structures in the vicinity of both the ‘pressure-side’ and the ‘suction-side’ walls in
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Figure 12. Time history of the eddy elongation parameter, L∗, in the pure shear flow case R = 0.



Rotating shear flow 187

20

15

10

5

0 2 4 6 8 10 12

St

W*

RDTT

RDT
DNS (S0

* = 34)

Figure 13. Time history of the energy partition parameter, W ∗, in the pure shear flow case R = 0.
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Figure 14. Time history of the eddy elongation parameter, L∗, for
R = 1/2, R = 0, R = −1/2, R = −1, R = −3/2. (a) RDT, Ret = ∞; (b) RDTT, Ret = 33.3, N = 4.

a rotating channel. As has been known for a long time, the pressure-driven side is
characterized by a ‘destabilization’, so that the turbulence is amplified with respect to
the non-rotating case, in agreement with B < 0. On the same side, the number and
intensity of the streaky structures are enhanced, and they also have a strong analogy
with the Görtler vortices near a concave wall (Kristoffersen & Andersson 1993). In a
large zone around the centreline, a linear mean velocity profile is found, which is in
agreement with a zero-absolute-vorticity condition 2Ω− S = 0, or equivalently B = 0
with R = −1; accordingly, the turbulence is found to be not very active in the central
region. Near the opposite wall – suction side – the turbulence is stabilized and can
completely vanish, in agreement with B > 0. Before giving comparisons between DNS
results in a rotating channel and the RDT results shown in this paper, figure 14(a)
presents the development of the quantity L∗ = L1

11/(2L
3
11) from equations in Appendix

B for a wide range of the rotation parameter R, including stabilizing, neutral and
destabilizing cases. A strong increase is found for L∗ when R = −1/2 (the exponential
shape of L∗ reflects the exponential growth for maximum destabilization) and R = 0,
(only algebraic growth), whereas L∗ remains constant when R = −1 (the case of zero
absolute vorticity) or oscillates with a weak amplitude when R = 1/2, R = −3/2
(stable cases B = 3/4, see figure 14). The same conclusion can be drawn from the
predictions of viscous RDTT (see figure 14b).
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Figure 15. Time history of the energy partition parameter, W ∗, for R = 0, R = −1/2, R = −1.

From this qualitative analysis, we can infer the following statements.
(i) L∗ � 1 is the only indicator of streamwise elongated structures; it gives the ratio

of streamwise to spanwise coherence lengths, independently of the ‘jettal’ or ‘vortical’
character of the structures.

(ii) W ∗ � 1 is a side indicator, and is of interest only if the structures are
jettal; it is relevant in non-rotating shear, where streak-like structures develop with
a peak–valley velocity distribution (streamwise vorticity is much less relevant than
streamwise velocity). On the other hand, only a moderate value (W ∗ < 2) is found
for the most destabilizing case (figure 15). This suggest that the elongated structures
(identified by high values of L∗) are more vortical than jettal in the case where
rotation is destabilizing (R = −1/2), in agreement with the fact that these structures
resemble co-rotative Görtler vortices near the pressure (destabilized) side of the
rotating channel, as mentioned above.

(iii) In the destabilizing case, a ‘streamwise vorticity partition’ parameter V ∗ =
〈ω2

1〉/(〈ω2
2 +ω2

3〉) would be informative, so that L∗ � 1 and V ∗ � 1 could characterize
elongated vortical structures. The last interesting case is R = −1 (zero absolute
vorticity). Since L∗ = 1, the RDT result is consistent with the absence of elongated
structures near the centreline of a channel. Nevertheless, the RDT is also consistent
with a vortical structure, given by the Cauchy solution of the Helmholtz equation;
accordingly, the vorticity parameter V ∗ is increasing as (St)2 in inviscid RDT at
R = −1. This increase in V ∗ is consistent with the decrease in W ∗ shown in figure
15. As an explanation, one can argue that dominance of the streamwise component
of vorticity means dominance of transverse components of velocity, disregarding the
difference of scale between velocity and vorticity (smaller scales).

Regarding other possible ‘streak detectors’ based on statistical quantities, Hunt &
Carruthers (1978) pointed out that the RDT development of the energy spectrum
E(k, t) for pure shear led to a k−2 slope at large times St. Such integer values for
the exponent can arise from discontinuities in the velocity field, but can also arise
from accumulation points (as explained by Hunt & Vassilicos 1991). k−2 slopes were
recovered at R = 0 in our own calculations, but also for other values (such as R = −1)
for which no streak-like tendency is observed.

Finally, all the results and inferences of this section suggest (Godeferd 1995) that
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the results of homogeneous RDT will compare well with those of DNS-LES in a
rotating channel flow at the same values of R = −2Ω/(dU1/dx2).

6. Summary and conclusions
The case of pure plane shear flow in a rotating frame has been analysed in this

paper, with new information gained by means of an extensive RDT approach. This
study had three aims:

(i) to estimate, qualitatively and quantitatively, the asymmetry between R and
−1− R cases, due to the ‘rapid’ pressure effect;

(ii) to check the effective viscosity model (RDTT) using available LES data;
(iii) to extend to the rotating cases the ‘structural’ approach of Lee et al. (1990),

given the unexpectedly good predictions of homogeneous RDT when compared to
DNS in a channel flow without rotation.

Since RDT computations of pure shear flow in a rotating frame are not new, it is
necessary to point out two essential characteristics of this work as follows.

First, the starting point is the most general linear analysis, so that linearized equa-
tions are those which govern the fluctuating velocity field. The calculation of the ma-
trix G (equation (4)) gives complete information about stabilization/destabilization,
including algebraic as well as exponential growth (as in related studies on hydro-
dynamic stability, Bayly 1986). In addition, linear solutions for statistical moments
of any order, from arbitrary initial data, can be generated using G-products. This
generality is lost when solving the ‘rapid part’ of the equation which governs Φij
(the so-called Craya equation for the second-order spectral tensor, not recalled here),
as previously done by several authors (Deissler 1970; Courseau & Loiseau 1978;
Bertoglio 1982).

Secondly, when the total distortion is strong (or St � 1), analytical solutions
are particularly useful. In any numerical method, ranging from integration of RDT
equations such as (8) to complete pseudo-spectral DNS, the mean distortion induces
a loss of accuracy, which limits the relevance of the computations at St = 10 to 15.
Even in the 1283 DNS database from Lee et al., unphysical oscillations are shown in
the development of some two-dimensional energy components (see E(3)

22 in figure 3b),
and the relevant range does not exceed St = 12.

The results regarding the three aims, quoted above, are as follows
(i) The asymmetry in the development of statistics with respect to R → (−1 − R),

due to the ‘rapid’ pressure effect, has been investigated using RDT in different ways.
R-distributions at fixed St are useful provided that only quantities symmetric with
respect to (1, 2) permutation (e.g. q2, b33, b12, but not E(1)

ii ) are considered (see the
remark at the end of §3). From this viewpoint the asymmetry shown in figure 11(a, b)
at a given St value (=5) is significant but not dramatic. Another way consists of
comparing time developments for two cases with the same B-value. As an illustration,
the two presumed neutral (B = 0) cases R = 0 (no rotation) and R = −1 (zero
absolute vorticity) are found to be completely different from a structural viewpoint:
a streak-like tendency develops in the former, but not in the latter, in agreement with
the different development of the elongation parameters L∗, W ∗, as discussed below.

(ii) Viscous RDT solutions can easily incorporate an effective viscosity model,
following Townsend’s approach (RDTT), by only specifying the initial energy spec-
trum and a ‘universal’ value for the effective Reynolds number. In addition to the
(expected) good qualitative agreement between RDT and LES, an excellent quanti-
tative agreement was shown between RDTT and available LES results (Bardina et
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al. 1983), looking at quantities such as the Reynolds stress components, obtained by
three-dimensional integration over wave-space. This strongly suggests that the dy-
namics of the largest scales is essentially driven by the linear regime. The agreement
between RDTT and LES, however, is not so good for quantities such as the spanwise
two-dimensional energy components, which involve only the two-dimensional wave-
plane normal to the spanwise direction. This confirm that these quantities reflect the
nonlinear dynamics in a more explicit and complicated manner than the Reynolds
stress components, as previously shown in the case of pure rotation (Jacquin et al.
1990; Cambon & Jacquin 1989; Cambon, Mansour & Godeferd 1997).

(iii) An investigation of structure has been performed using RDT, mainly based on
the analytical calculations of the spanwise and streamwise two-dimensional energy
components in §3. A qualitative analysis has been made with reference to the case
of plane channel flow in a rotating frame, in which the range of rotation parameters
R = −2Ω/(∂U1/∂x2) is very large, when considering different horizontal sections x2

= constant. It is suggested that the ‘streamwise eddy elongation parameter’ L∗ =
E(1)

11 /(2E
(1)
33 ) only characterizes the tendency to develop elongated structure, and its

RDT estimation takes into account the qualitative role of R in a channel flow. The
other parameter introduced by Lee et al., ‘streamwise energy partition’ parameter W ∗,
is only relevant when the elongated structures are like jets rather than vortices: this
concerns the streaks in the non-rotating case, but not the ‘reinforced streaks’ near the
destabilized wall, that seem to be closer to Görtler vortices than to actual streaks. This
preliminary work needs to be continued using quantitative comparisons with well-
documented DNS data of the rotating channel flow, such as those in Kristoffersen &
Andersson (1993).

The authors are grateful to Dr Fabien S. Godeferd and Dr Nicholas Kevlahan for
discussions and suggestions. This work was supported by a contract CMCU-95F/1322
for French-Tunisian Academic collaboration

Appendix A. Analytical solutions of the matrix g
Several authors (Craya 1958; Herring 1974; Rogallo 1981; Cambon 1982) proposed

introducing an orthonormal frame e(1) = n× k/ ‖ n× k ‖, e(2), e(3) = k/k, attached to
the wave vector and in which the incompressibility constraint (kiûi = 0) is satisfied by
construction, so that

û(k, t) = φ̂1(k, t)e
(1)(k) + φ̂2(k, t)e

(2)(k). (A 1)

Here n is a fixed vector, chosen in the vertical direction (figure 1) for obtaining the

simplest form of the equations, or ni = δi2. The solenoidal modes φ̂α (Greek indices
take only the value 1 and 2, keeping the summation rule) satisfy an equation similar
to (4) (Cambon 1982) as follows:

φ̂α(k, t) = gαβ(k/k, t)φ̂β(K , 0) exp(−νk2/S)f(k/k, t)). (A 2)

The matrix gαβ(k/k, t) with gαβ(t = 0) = δαβ, unlike the matrix Gij in (4), generates
the basic linear solutions with the minimum number of parameters. This matrix g
(Cambon 1982; Cambon et al. 1994) is close to the matrix denoted A by Townsend
(1976) and to the Floquet matrix calculated by Bayly (1986) in the case of the elliptical
flow instability. In the case of homogeneous turbulent shear flow in a rotating frame,
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the components gαβ are governed by generic equations

σ(t)ÿ + λy = 0, (A 3)

where σ(t) = K2
1 (St)2 − 2K1K2St+K2 and λ = BK2

3 .
Simple solutions are found when λ = 0 (i.e. B = 0, B = ∞ or k3 = 0) or when

σ(t) = Constant (i.e. k1 = 0).
For k3 = 0, the transformation matrix is independent of R

gαβ =

 1 0

0
K

k

 .

For k1 = 0, the matrix g has the following form:

gαβ =

 cosh (ωSt) −(1 + R)
k3

k

sinh (ωSt)

ω

R
k3

k

sinh (ωSt)

ω
cosh (ωSt)

 ,

where ω = (k3/k)(−B)1/2. A similar expression is obtained when B > 0.
Townsend (1980) has given the expression for the matrix A in the cases of a simple

shear flow, R = 0, of a solid body rotation, R = ∞ and of an irrotational distortion
with axisymmetric, constant circular flow, which is similar to the flow with zero
absolute vorticity, R = −1. The matrix g has fewer components and simpler forms
than the matrix A, for instance

gαβ(R = ∞) =

(
cos (2Ω(k3/k)t) − sin (2Ω(k3/k)t)

sin (2Ω(k3/k)t) cos (2Ω(k3/k)t)

)
,

gαβ(R = 0) =

(
1 c

0 (K/k)

)
,

gαβ(R = −1) =

(
1 0

−(k3/k)St (K/k)

)
,

where

c =
KK3

(K2
1 +K2

3 )1/2

1

K1

[
tan−1 K2 −K1St

(K2
1 +K2

3 )1/2
− tan−1 K2

(K2
1 +K2

3 )1/2

]
in gαβ(R = 0). Recall that (K1, K2, K3) are the components of the wave vector at t = 0.

If we exclude the particular solutions (k3 = 0, k1 = 0, R = −1, 0,∞) given above,
(A 3) can be rewritten as

z(1− z)d2y

dz2
− K2

3

K2
1

By = 0, (A 4)

where

z =
1

2

(
1− i

K2 −K1St

(K2
1 +K2

3 )1/2

)
.

Two linearly independent solutions y1(z) and y2(z) of (A2) can be found (see Erdeli
et al. 1953),

y1 = zF(a+ 1,−a; 2; z),
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y2 = (1− z)F(−a, a+ 1; 2; 1− z),
where F is the hypergeometric function and

a = − 1
2

if B = K2
1/(4K

2
3 ),

a = − 1
2
(1± [1− (4K2

3B/K
2
1 )]1/2) if B < K2

1/(4K
2
3 ),

a = − 1
2
(1± i[(4K2

3B/K
2
1 )− 1)]1/2 if B > K2

1/(4K
2
3 ).

As indicated previously, the inviscid linear stability problem is characterized by the
matrix g. These solutions deserve more attention and will be examined further.

Appendix B. Two-dimensional energy components
Two-dimensional energy components in the streamwise and spanwise directions are

derived from the following definitions:

E1
ij = 〈uiuj〉L1

ij = 2π

∫ ∞
0

∫ π

0

Φ
g
ij(ϕ = π/2)

E(K, 0)

4K2
exp

(
−2

νk2

S
f(k/k, t)

)
dkdθ,

E3
ij = 〈uiuj〉L3

ij = π

∫ ∞
0

∫ 2π

0

Φ
g
ij(θ = π/2)

E(K, 0)

4K2
exp

(
−2

νk2

S
f(k/k, t)

)
dkdϕ.

For k1 = 0 and B 6 0, the quantities eg and Zg in (7) are of the form

eg = 1 +
1

2

k2
3

k2

sin2 ωSt

ω2
,

Zg = −1 + R

2

k2
3

k2

sin2 ωSt

ω2
− i

k3

k

sin 2ωSt

2ω
,

respectively.
In inviscid RDT (Ret = ∞) one finds

E(1)
11 (t)

E(1)
11 (0)

= 1 +
1

πR

∫ π

0

sin2(B1/2St cos θ)dθ,

E(1)
22 (t)

E(1)
22 (0)

= 1− 2

π(1 + R)

∫ π

0

(cos2 θ) sin2(B1/2St cos θ)dθ,

E(1)
33 (t)

E(1)
33 (0)

= 1− 2

π(1 + R)

∫ π

0

(sin2 θ) sin2(B1/2St cos θ)dθ.

Similar equations are obtained for B < 0. The last integrals are calculated from
Gradshteyn & Ryzhik (1965), as follows:

E(1)
11 (t)

E(1)
11 (0)

= 1− (1 + R)

2
(St)2

(
−1 +

∞∑
j=2

(−1)j(B(St)2)j−1

(j!)2

)
, (B 1)

E(1)
22 (t)

E(1)
22 (0)

= 1 +
R

2
(St)2

(
−3

2
+

∞∑
j=2

(−1)j(2j + 1)(B(St)2)j−1

j!(j + 1)!

)
, (B 2)

E(1)
33 (t)

E(1)
33 (0)

= 1 +
R

2
(St)2

(
−1

2
+

∞∑
j=2

(−1)j(B(St)2)j−1

j!(j + 1)!

)
, (B 3)
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and

E(1)
12 (t)

E(1)
11 (0)

=
−(St)

2

(
1− B(St)

2
+

∞∑
j=2

(−1)j(B(St)2)j−1

j!(j + 1)!

)
. (B 4)

Note that a simpler analytical relationship can be derived when B1/2St → ∞ along
the lines of Hanazaki & Hunt (1996). If we consider the spectrum given by equation
(8), the behaviours of streamwise two-dimensional components in viscous RDT are
related to those obtained in inviscid RDT, as follows:

E(1)
ij (t) = E(1)

ij (t, Ret = ∞)

(
1 +

4(St)

Ret

)−N/2
.

When the nonlinear terms and the linear part of the pressure are omitted, for
B 6 0 the streamwise two-dimensional energy components are (similar expressions
are obtained for B > 0)

E(1)
11 (t)

E(1)
11 (0)

= cosh2(−B)1/2St+
(1 + R)2

2

sinh2((−B)1/2St)

B
, (B 5)

E(1)
22 (t)

E(1)
22 (0)

= cosh2(−B)1/2St+ 2R2 sinh2((−B)1/2St)

B
, (B 6)

E(1)
33 (t)

E(1)
33 (0)

= 1, (B 7)

E(1)
12 (t)

E(1)
11 (0)

=
(R − 1)

4

sinh (2(−B)1/2St)

(−B)1/2
. (B 8)

A comparison of these relationship to those given by (B 1)–(B 4) for any value of R
shows that the pressure affects the streamwise two-dimensional energy components,
except when R = 0 (pure shear case) where

E(1)
11 (t)

E(1)
11 (0)

= 1 +
(St)2

2
, E(1)

22 (t) = E(1)
22 (0), E(1)

33 (t) = E(1)
33 (0),

E(1)
12 (t)

E(1)
11 (0)

=
−St

2
.
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